
It’s a funny thing, this Delphi.
Before it came along, people

who bought a Pascal compiler
would probably learn how to talk
to normal files using standard file
management routines. If they
wanted to talk to established
database formats they would
need to obtain an appropriate
add-on library, such as the
Paradox Engine or the Borland
Database Engine, and negotiate
the many APIs it required in
particular orders and the appro-
priate parameter sets. Delphi has
made database access of practi-
cally any description a breeze. So
much has it turned the tables that
many Delphi users might not
know where to look for file
management routines which are
not centred around a database
table.

The purpose of this series of
articles is to explore what Delphi
has to offer on the subject of file
manipulation. The principal bene-
factors will be those readers new to
file handling, but I hope to include
enough bits and bobs so that even
the experienced will pick up one or
two things along the way. Subjects
to be covered include basic file
access using file variables (text,
typed and untyped), file handles,
one or two efficiency tips, file shar-
ing, record locking (and no, I’m not
sneakily introducing a database
section!), text file device drivers
and streaming.

So what do we need to know how
to do, with respect to files? Things
we may wish for include creating
files, writing data to them, both
sequentially and in a random
access fashion, reading from files
(again sequentially and random
access), renaming, copying, delet-
ing, making directories, finding
files and probably more besides.
Fortunately, Delphi has routines
available to do all these and more.

File Handling: Part 1
by Brian Long

File Variables
First things first, though: how do
we represent a file in a program?
Pascal offers two ways: the historic
Pascal file variable and the more
recent file handle, corresponding
to the options C programmers
have. We’ll deal with file variables
first and come back to file handles
later.

There are three forms of file
variable, and the type we use
depends on what form of file we
wish to address. If we are inter-
ested in a text file, we use the Text
type, defined in the System unit
(the unit that is implicitly used by
every unit and main program we
write, ie the unit which implements
the core run-time library). Al-
though this is a valid type to use in
Delphi, it is also the name of a prop-
erty of several components and so
Delphi introduces another term,
TextFile, to use in its place. In the
previous Borland Pascal we can
use Text, in Delphi we should use
TextFile or at least fully qualify
Text and use System.Text to tell the
compiler exactly which unit it
should look in to find the routine
we want.

If we are looking at a non-text file
we need to identify if there is a
regular record structure to the file.
If so, we can use a typed file vari-
able, otherwise an untyped file
variable. Some example variable
definitions are shown in Listing 1,
where ATextFile is clearly intended
for use with a text file. The variable
AnUntypedFile can be used for any
arbitrary file and ATypedFile can be
used for a file which is made up of
Double values. You can see that a
typed file definition is an extension
of an untyped file, specifying the
type of data constituting the file.

A file variable is not much use
until it has been associated with a
real file name – this is done with the
Assign procedure. Again, Delphi
has a number of methods called
Assign, so it introduces a substitute
called AssignFile. A file assignment
looks like this:

AssignFile(ATextFile,
 ’C:\AUTOEXEC.BAT’);

Now we are ready to run: we can
open the file. How we do this
depends on whether we want to
read or write the file, or both. A text
file can be opened for reading or
writing; typed and untyped files
can be opened for reading, writing
or both. The Rewrite procedure will
create a new file and open it for
writing, for any file type. Append can
be used to open an existing text file
so more text can be added at the
end.

The Reset procedure operates
differently depending on the file
type. If given a text file, Reset opens
the file read-only, but if it is given a
typed or untyped file, it opens it in
read/write mode (by default – we’ll
come back to how to change this)
to allow random access reading
and writing.

Reset and Rewrite are often used
in combination to open an existing
file, ensuring it exists first:

if not Exists(FileName) then
 {create file if not found}
 Rewrite(FileName);
Reset(FileVar); {open the file}

Closing the file is done with Close,
although Delphi adds CloseFile as
a synonym to avoid conflicts with
the many Close methods in the
VCL.

var
 ATextFile: TextFile; { Could use System.Text instead }
 AnUntypedFile: File;
 ATypedFile: File of Double;

➤ Listing 1

February 1996 The Delphi Magazine 11

Reset(AnUntypedFile);
{ do something }
CloseFile(AnUntypedFile);

Records And Buffers
A typed file has a clear concept of
records, each component item in
the file is termed a record and the
record size for the file is the size of
each item. For ATypedFile (Listing
1), the record size is the size of a
Double, ie SizeOf(Double) or 8 bytes.
With an untyped file it is not so
clear. An impulse might be to think
that an untyped file is simply a
collection of bytes and so it has a
record size of 1 byte. This is not
necessarily the case – if it were a
file of bytes, why not insist it is
declared as File of Byte? In fact, by
default, Reset gives an untyped file
a record size of 128 bytes. It isn’t
quite so important these days with
clever disk caching that we all tend
to have, but historically, reading
and writing files 128 bytes at a time
is considerably more efficient than
reading one byte at a time. If you
want to change this default
untyped file record size, you can
use an optional second parameter
to Reset, eg for a record size of 2048
bytes:

Reset(AnUntypedFile, 2048);

Text files do not have a record size
as such, but there is a buffer asso-
ciated with each text file which also
defaults to 128 bytes and it is used
to read or write text files 128 bytes
at a time for efficiency. Again, you
can change this if you wish, this
time using the SetTextBuf routine,
which you pass a buffer of any type
to and this will be used until Assign
or AssignFile is next called for the
text file variable. Make sure the
buffer will be in existence for as
long as the text file will be open –
bad things will happen if you pass
a local variable which goes out of
scope before the file is closed.
Also, do not call SetTextBuf after
accessing the file or you are likely
to lose data. See Listing 2 for an
example.

If you don’t want the file to use
all the buffer, you can use an
optional third parameter to limit
how much it uses. This extra

parameter defaults to the size of
the passed in buffer, here it’s
limited to half of the buffer size:

SetTextBuf(ATextFile, Buffer,
 SizeOf(Buffer) div 2);

Since there isn’t really a record size
associated with a text file, there’s
just a buffer that fills up as you
write to it, you can end up with data
written to the text file variable
sitting in memory for some time
(until the file is closed). If you want
to ensure the data is sent to the
operating system to do with what
it will, but don’t feel like closing the
file, you can call the Flush routine:

Flush(ATextFile);

Reading And Writing
So that’s some housekeeping out
the way; now we need to find how
to access data in the file. To read
and write data from text files or
typed files, we use the Read and
Write routines.

These will be very familiar to
Borland Pascal users as the way
you also read and write to the
standard Input/Output devices
(keyboard and screen), but per-
haps not so to many Delphi users
where by default there are no
standard I/O devices (though you
can set some up as shown later).

Read and Write are unusual calls
since they can take a variable
number of arguments (mind you,
so do Reset and SetTextBuf and I
didn’t raise an eyebrow at them). It
is not possible to define your own
routines to do the same, although
Delphi does allow it with the
penalty of an extra pair of square
brackets (eg, consider the Format
function, and the TTable.FindKey
method).

The first parameter you need to
pass is the file variable and this is
followed by the data you wish to
write. In the case of a text file this
can be integers, floating point num-
bers etc, each of which get written
to the file as their textual equiva-
lent. Additionally, for text files, you
can use ReadLn and WriteLn to read
or write whatever values, if any, are
passed followed by a carriage re-
turn and line feed. For typed files,
the values must match the compo-
nent type of the file. Listing 3 shows
examples.

Untyped files can’t use those
routines; instead they must use
BlockRead and BlockWrite. To see
the extent of file variable support
in the libraries, Table 1 lists all the
routines that work solely with text
file variables and Table 2 shows
those that work with any file vari-
ables except text files. Table 3 lists
untyped file variable routines and

var
 ATextFile: TextFile;
 Buffer: array[1..2048] of Char;
procedure DoFileStuff;
begin
 AssignFile(ATextFile, ’BIGFILE.DAT’);
 Reset(ATextFile);
 try
 SetTextBuf(ATextFile, Buffer);
 { do something }
 finally
 CloseFile(ATextFile);
 end;
end;

➤ Listing 2

var
 ATextFile: TextFile;
 ATypedFile: File of Double;
procedure DoMoreFileStuff(Dbl: Double);
begin
 WriteLn(ATextFile, 1, ’ Hello ’, 5.5);
 Write(ATypedFile, Dbl);
end;

➤ Listing 3

12 The Delphi Magazine Issue 6

Table 4 has those that work with all
file variables, regardless of type.

Okay, let’s see some code, firstly
for text files. Listing 4 shows a
routine which dumps a text file to
the screen by reading lines from
the file until the end of file is en-
countered. It’s used by the project
DUMPTEXT.DPR on the disk, which
writes out your AUTOEXEC.BAT.

Note that in a GUI Windows pro-
gram there are no standard input
or output devices to get data from
or present information to the user
by default. In Delphi 1.0x we can
use the WinCrt unit to emulate
them and in Delphi 2.0 we will be
able to generate console mode
(text mode) applications by setting
a linker option. Then, whenever a
Write/WriteLn or Read/ReadLn in-
struction appears without a file
variable the standard input (key-
board) will be read from or the
standard output (CRT emulation or
text window) will be written to.
Without WinCrt, such an instruc-
tion in a 16-bit application will give
run-time error 104 (file not open for
input) or 105 (file not open for
output). In a 32-bit application you
will get no error.

The previous routine dealt with
lines as individual entities, but
often this will not be a sensible
approach.

Consider a tab separated data
file, having 5 entries per line inter-
spersed with tab characters. A bet-
ter way to treat such a file is to use
Read instead of ReadLn and check for
the end of the line with Eoln or
SeekEoln. To show the difference
between these two functions, try

System unit (Delphi and Borland Pascal):

Append Opens a text file in write-only mode allowing text to
be added at the end

Eoln Returns True if the file pointer is at the end of a line

Flush Flushes text file’s internal 128-byte (by default) buffer
to DOS

ReadLn Reads a line of a text file

SeekEof Same as Eof but skips past white spaces and end of lines
before performing the test

SeekEoln Same as Eoln but skips past white spaces before
performing the test

SetTextBuf Replaces the 128 byte I/O buffer with a different
(usually bigger) one for more efficient text file
operations

WriteLn Writes a line of text at the current file pointer

➤ Table 1: File variable routines – text files only

System unit (Delphi and Borland Pascal):

FilePos Returns position of file pointer of an open file in terms
of records

FileSize Returns file size in terms of records

Seek Moves the file pointer to a particular record

Truncate Sets the current file position as the end of file

➤ Table 2: File variable routines – non-text files only

procedure DumpTextFile(
 const FileName: String);
var
 F: TextFile;
 S: String;
begin
 try
 AssignFile(F, FileName);
 Reset(F);
 while not EOF(F) do
 begin
 ReadLn(F, S);
 WriteLn(S);
 end;
 finally
 CloseFile(F);
 end;
end;

➤ Listing 4

➤ Figure 1

➤ Figure 2

the routine in Listing 5 (from the
program READDATA.DPR on the
disk) which starts off using Eoln.

Notice the numbers are written
out to the first line of the file with
tab separators (ASCII value 9), and
when all of them have been written,
a line terminator is written by
calling WriteLn(F). The numbers 1,
2 and 3 are written to the file, but
the numbers read back and written
to the screen are 1, 2, 3 and 0 (see
Figure 1).

The problem here is that after
the 3, another tab character is
written out. During the read loop,
when the 3 has been read back in,
the end of the line has not been
reached – the tab character
remains, and so another iteration
of the loop takes place. No number
exists after the 3, so the Read
returns a zero. In short, the extra

14 The Delphi Magazine Issue 6

System unit (Delphi and Borland Pascal):

Assign Associates a file variable with an file name

AssignFile Delphi substitute for Assign to avoid scoping problems

Close Closes a file

CloseFile Delphi substitute for Close to avoid scoping problems

Eof Returns True if file pointer is at the end of the file

Erase Deletes a file

Read Reads data from a file

Rename Renames a file

Reset Opens a file – text files are read-only, other files are
read/write but can be changed with FileMode variable

ReWrite Creates and opens a new file

Write Writes data to a file

WinDos unit (Delphi and Borland Pascal) & Dos unit (B Pascal only):

GetFAttr Finds a file’s attributes, Delphi introduces FileGetAttr

GetFTime Used with UnpackTime to find file’s last modification time
and date; Delphi introduces FileGetDate

SetFAttr Sets a file’s attributes. Delphi introduces FileSetAttr

SetFTime Used with PackTime to set file’s last modification time
and date; Delphi introduces FileSetDate

➤ Table 4: File variable routines – any files

program ChangApp;
{$ifdef WINDOWS}
uses WinCrt;
{$else}
 {$ifndef CONSOLE}
 ’Turn on Project | Options | Linker | Generate console application’
 {$endif}
{$endif}
type
 TWordRec = record
 Lo, Hi: Byte;
 end;
procedure UpdateApp(const FileName: String);
var F: File;
 Num, NewExeOffset: Word;
const Sig: String[2] = ’ ’;
begin
 AssignFile(F, FileName);
 try
 Reset(F, 1);
 BlockRead(F, Sig[1], SizeOf(Word));
 if Sig <> ’MZ’ then begin
 WriteLn(’Not a valid EXE file’);
 Exit;
 end;
 Seek(F, $18);
 BlockRead(F, Num, SizeOf(Word));
 if Num < $40 then begin
 WriteLn(’Not a Windows EXE file’);
 Exit;

 end;
 Seek(F, $3C);
 BlockRead(F, NewExeOffset, SizeOf(Word));
 Seek(F, NewExeOffset);
 BlockRead(F, Sig[1], SizeOf(Word));
 if Sig <> ’NE’ then begin
 WriteLn(’Not a Windows EXE file’);
 Exit;
 end;
 Seek(F, NewExeOffset + $3E);
 BlockRead(F, Num, SizeOf(Word));
 with TWordRec(Num) do
 WriteLn(’Current expected Windows version is ’,
 Hi, ’.’, Lo);
 WriteLn(’Setting to 4.0’);
 Seek(F, NewExeOffset + $3E);
 Num := $400;
 BlockWrite(F, Num, SizeOf(Word));
 finally
 CloseFile(F);
 end;
end;
var Buf: Char;
 Num: Integer;
begin
 if ParamCount = 0 then begin
 WriteLn(’Pass the filename as a command-line parameter’);
 { ... }
 { SEE FILE CHANGAPP.DPR ON DISK FOR FULL CODE LISTING }

white space mucked things up.
This is where SeekEoln comes in.
SeekEoln eats up any white space
before deciding whether it is at the
end of the line. Changing Eoln to
SeekEoln changes the program to
do what we would expect, as
shown in Figure 2.

Untyped Files
Now for untyped files. The example
I’m using here is operating on a
Windows 3.1x executable file.

In an article in Microsoft Systems
Journal (September, 1994), Matt
Pietrek tells us that Windows 95
can be of particular help for the
badly behaved applications which

➤ Below: Listing 6

System unit (Delphi and Borland Pascal):

BlockRead Reads an arbitrary number of records from a file

BlockWrite Writes an arbitrary number of records to a file

➤ Table 3: File variable routines – untyped files only

procedure WriteAndReadDataFile;
var
 F: TextFile;
 Loop, Num: Byte;
begin
 AssignFile(
 F, ’C:\DELETEME.DAT’);
 try
 Rewrite(F);
 for Loop := 1 to 3 do
 Write(F, Loop, #9);
 WriteLn(F);
 Reset(F);
 while not Eoln(F) do begin
 { Change Eoln to SeekEoln
 to work properly }
 Read(F, Num);
 WriteLn(Num);
 end;
 finally
 CloseFile(F);
 end;
end;

➤ Listing 5

February 1996 The Delphi Magazine 15

plagued Windows 3.1. In the
executable file header is a number
indicating the expected Windows
version. Windows 3.1 applications
use a word where the high byte is
3 and the low byte is 10, indicating
3.10. If this is changed to 4.00,
Windows 95 will tidy up Windows
resources left hanging around by
sloppy programming. A Windows
executable is a good example of a
file with no regular structure:
there are various tables and
values. The format is partially
documented in the Windows API
help file, available in the Delphi
help in the topic “Executable-File
Header Format.”

Listing 6 is from the program
CHANGAPP.DPR on the disk. This
program takes a command-line
parameter (you can set one up in
the Delphi IDE by selecting Run |
Parameters) which should be the
name of a Windows 3.1x executable
file. The program will change the
expected version to 4.0.

As it turns out, all values the
program reads and writes are
word-sized, but not all of them are
Word types. The program opens the
file with a record size of 1 (using
Reset(F, 1)), so that the offsets in
the .EXE file format documentation
can be used readily (forgetting to
amend the record size in Reset
from the default 128 bytes is a
common cause of errors when
using untyped files). The first thing
it does is check the first two bytes
are “MZ” which implies it is an
executable file. BlockRead is used to
read them into a two byte string to
facilitate this comparison.

Then the word at offset $18 is
tested against $40. If the value is
greater or equal, it means the value
at offset $3C represents the offset
in the file of the Windows header,
and that header is tested to ensure
it starts with “NE”. $3E bytes past
the start of the Windows header is
the expected Windows version:
this is read in and written out to the
screen. A typecast is used to allow
the high and low bytes to be
written individually.

An alternative and perhaps more
readable version of that particular
section would have involved
reading two individual byte values,

since that is what is being written
out, but never mind. Isn’t hindsight
a wonderful thing? If you are
unfamiliar with the principles of
typecasting, see my articles on the
subject in Issues 3, 4 and 5.

To prove that non-text files can
be used as random access read/
write devices, the file pointer is
moved back to the place where the
version is stored and a new version
is written with BlockWrite and
finally the file is closed.

You may have noticed that I
defined a record TWordRec to access
the two bytes of a word with, in the
context of a typecast. Whilst there
is a perfectly suitable WordRec type
in the SysUtils unit, I chose not to
use that unit, as it carries a lot of
baggage, that will be added into my
EXE, of which I will be making no
use, such as date and time
formatting information, hardware
exception handling etc.

Typed Files
Text files and untyped files we can
tick off now. Onwards to typed
files. A typed file is essentially a
binary data file which happens to
have some order or structure.

Let’s consider that we might like
to store numbers from zero to 90
along with their sines, cosines and
tangents in a file to save calculating
them all the time in a program
which has heavy trigonometry
usage. Well, yes, I know I’m stretch-
ing reality a bit here – it’s hardly
likely to be more efficient what with
all the file access overhead, but it
will suffice for the purposes of our
demonstration. We can define a re-
cord to hold the required
information as:

type
 TMaths = record
 Val: Byte;
 Sine, Cosine, Tangent:
 Double;
 end;

A routine to set up the file could
look like Listing 7 (see MATHS.DPR
on the disk for an example).

If you run the program and look
at the resultant file, you will see
that it is an unreadable binary file.
If the file is opened with Reset it will

procedure SetupFile;
var
 Maths: TMaths;
 Loop: Byte;
 F: File of TMaths;
begin
 AssignFile(
 F, ’C:\DELETEME.DAT’);
 try
 Rewrite(F);
 for Loop := 1 to 90 do begin
 with Maths do begin
 Val := Loop;
 Sine := Sin(Loop);
 Cosine := Cos(Loop);
 Tangent := Sine/Cosine;
 end;
 Write(F, Maths);
 end;
 finally
 CloseFile(F);
 end;
end;

➤ Listing 7

be a random access read/write file,
just like the previous untyped file
example. The Seek routine would
allow us to seek to any individual
record in the file and read or write
it. If we go to the end of the file,
possibly by using the call
Seek(FileSize(F)), and write new
values, the file would be extended.

Next Time
We’ll carry on looking at file
variables, file handles and general
file access routines next time.

Brian Long is an independent
consultant and trainer specialising
in Delphi. His email address is
76004.3437@compuserve.com

16 The Delphi Magazine Issue 6

	File Variables
	Records and Buffers
	Reading and Writing
	Untyped Files
	Typed Files
	Next Time

